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ABSTRACT

A statistical analysis of 27 years of monthly averaged sea surface
temperature (SST) and ice concentration data was conducted for 17
locations along the annual mean position of the marginal ice zone
spanning the North Atlantic. Anomalies (differences from mo;lthly
means) of both variables were observed to have spatial scales of 100s
to 1000s of kms, temporal scales of 6 months to several years, and a
strong regional dependence. Sea surface temperature autocorrelation
values were in general higher than ice concentration autocorrelation
values. Cross-correlations between the two variables were found to be
highly significant in some regions and poor in others. The various cor-
relation features appeared plausible with respect to understood physi-
cal processes in each region. For example, the data for the northern
Barents and Iceland Seas showed strong cross-correlations at lags
extendir?g to over nine months. The steady-state cold water tempera-
tures and relatively weak currents in these regions enhanced persis-
tence of both SST and ice concentration, allowing them to interact.
By contrast, the Davis Strait area, a region of strong confluent currents
of different temperatures and limited ice persistence, showed weak
cross-correlation values. Statistical analyses of large, homogeneous
data sets as conducted in this study appear to be superior to current
thermodynamic models in their potential for long-range forecasts of

ice concentration.
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I. INTRODUCTION

The ability to forecast sea ice cover in Arctic waters is of prime
concern to many agencies. The oil industry must know the extent of
ice to plan drilling operations and design appropriate rigs. Fishing
fleets may be prevented from utilizing choice fishing grounds due to
ice cover. Surface shipping must be routed to avoid the dangers of ice
collision but retain the economy of shorter distances over great circle
northern routes. In some regions of the Arctic, resupply by sea can
only be conducted during minimal ice seasons. Significant volumes of
merchant vessel traffic that operate in the northern European and
USSR waters can only operate in relatively ice free seas.

Sea ice introduces many .complications to military operations.
Naval vessels used in northern waters must be properly designed if
they are to function effectively in the unique and extreme conditions
encountered in the region. |

The highly variable temperatures, surfaces, and material composi-
tion of water and ice in the polar regions have a dramatic effect on
both the air and ocean boundary layers. This in turn affects electro-
magnetic, electro-optical and acoustic transmission and reception.
Sea ice is a strong source of ambient acoustic noise and radar scatter.
Detection of underwater targets by passive or active means is difficult.
Detection of low level or surface targets by radar also becomes more of

a problem in the ice.
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\2 Obviously, a reasonably precise knowledge of where the ice is and |
NS4 where it is expected to be in the future can be very useful. One
:':‘::;' method to approach this problem, and indeed the focus of this work,
" : is to closely examine the so-called “interannual variability” of sea ice.
' In the meteorological/oceanographic context, interannual variabxhty
‘E will refer to departures from monthly and seasonal means defined
:E; from data for periods of 10 to 30 years. Longer base periods are gen-
'" erally not used because climatic trends may induce changes in the
\ means or “normals.” Interannual variations are the focal points of
;« long-range forecasts. Long-range forecasts can be considered as pre-
}. dictions of monthly or seasonally averaged departures from the clima-
tological mean.
- In the case of atmospheric forecasts, deterministic prediction of
H daily weather fluctuations is presently limited to 5 to 10 days. Theo-
\ retical arguments indicate that the ultimate range of such predictions
: ﬁ is several weeks. Evaluations of prediction skill at longer ranges is
- based on averages of forecast and observed fields over periods of 30 to
Etg 90 days. Forecasts of 30- or 90-day average fields may well show sig-
$3 nificant and useful skill even though day-to-day variability is not fore-
.. cast with skill. The same time scales apply to sea-ice forecasts.
: Previous studies (Lemke et al., 1980; Lebedev and Uralov, 1982;
A.:: Walsh and Johnson, 1979) have indicated that the persistence of ice
- anomalies (departures from normal) is considerably greater than the
3 persistence of atmospheric anomalies (Figure 1.1). Stated differently,
o
-s:-:
o 14
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\ daily fluctuations contribute considerably more to the variance of
atmospheric anomalies than to the variance of sea ice anomalies.

Several other implications of Figure 1.1 deserve mention. First,

% %t

the relatively large autocorrelations of sea ice anomalies imply that

»

N persistence will be a competitive control forecast. While the autocor-
r relations in Figure 1.1 are not region-specific, they imply that pe‘rsis-
tence alone can predict approximately 0.46 and 0.20 of the variance

(autocorrelation squared) of departures from normal ice cover at lead

57,

times of one and three months, respectively. Persistence statistics

LAY [V X0

will therefore be evaluated in the present work as a benchmark for
comparison with skill statistics derived from other forecasts. Second,
the sea ice autocorrelations in Figure 1.1 are comparable to those of
sea surface temperature (SST), which has long been used as an input
¢ to long-range weather forecasts for mid-latitudes. The similarity of
v time scales suggests that SSTs are associated with ice concentration
anomali;.s. If the two variables are coupled, then the skill of predic-

tion of one variable may be enhanced by considering the distribution of
s
- the other.

"}; Variable sea surface temperatures and ocean currents have been
- cited as likely sources of the “unexplained” ice variance in studies of
‘0 atmospheric forcing of sea ice (Haupt and Kant, 1976). Schell (1970)
2 and Rogers and van Loon (1979) have compared large-scale SST and
~ sea ice variations in selected regions and selected years. Considerable
l;‘: effort has also been expended in evaluating the coupling between
R~
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large-scale SST and atmospheric anomalies over the North Pacific
(e.g., Namias, 1976; Elsberry and Raney, 1978; Broccoli and Harnack,
1981) and the North Atlantic (e.g., Ratcliffe and Murray, 1970:
Rowntree, 1976; Haworth, 1978). Because these studies have indi-
cated the existence of statistically significant associations between
SST ano'malies and the atmospheric circulation, the link be'tween’SS’I‘
anomalies and the high-latitude sea ice distribution must be viewed in
the context of Figure 1.2. The “direct association,” in which high
SSTs enhance melting and/or retard freezing, is to be distinguished
from the “indirect association,” in which the sea ice distribution is
influenced by SST through an SST-induced effect on the atmospheric
circulation. The interpretation of the SST-ice coupling in observa-
tional data analysis is complicated by the possibility that both mecha-
nisms may act concurrently. Indeed. while the present study will
focus on the predictive applications of the “direct” association
betweenisST and sea ice in the North Atlantic, the “indirect™ associa-
tion is the basis of Soviet claims concerning seasonal predictability of
North Atlantic sea ice (Chapter IV).

The present work is a data-based investigation of SST-derived
predictability of sea ice in the North Atlantic. The study is motivated

by three major considerations:

1. SST represents potentially valuable but as yet largely unexploited
input to long-range sea ice prediction

2. Previous studies addressing the high-latitude portions of the
Pacific and Atlantic Oceans have achieved considerably less
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> diagnostic success in the Atlantic than in the Pacific (e.g., Walsh
:;‘: and Sater, 1981); and
1.8F
) 3. The recent release of the Comprehensive Ocean Atmosphere
N Data Set (COADS) provides the most solid foundation to date for
:',';j- an analysis of SST/ice concentration associations. However, the
p- potential for high latitude forecasting is still unclear as COADS
.:'r_Zi has yet to be utilized for this purpose.

\ -) The following points will serve as objectives for this study: -

"~:\.

"-;; 1. Autocorrelations of sea ice and SST anomalies will be systemati-
B cally evaluated in order to place the SST-derived ice pre-
Wy dictability into a framework of practical utility

Lo~ 2. Lag relationships between SST and sea ice concentration
:f,?. anomalies will be evaluated in order to determine which variable
A (SST or ice concentration) may serve as a useful predictor for
e the other in high-latitude regions.

’ 3. Soviet studies (e.g., Lebedev and Uralov, 1982) contain claims of
o high levels of skill in seasonal forecasts of summer ice coverage
Ao in the Greenland Sea. Since an SST input contributes to this
L skill, the Soviet scheme will be tested and used as one bench-
mark for the evaluation of the sea ice concentration-SST associ-
{ ations obtained here.
. ):'

r3s 4. In view of (3), particular attention will be given to the spatial and
W seasonal generality of the SST/ice concentration relationships
S obtained for regions such as the Greenland Sea. Specifically, the
A temporal and spatial scales of North Atlantic sea ice concentra-
3 tion and SST fluctuations will be evaluated. This should allow
._;;i assessment of regional and seasonal dependencies of SST-
oy derived forecast skill.

-,

2 The statistical correlations describing the SST/ice coupling will
be diagnosed by isolating the contribution of individual years to the
correlations, and by then examining the seasonal evolution of the
3.:-. anomalies within these years.

o The methodology chosen for use in this study is primarily statisti-
e

:3-:: cal rather than model-oriented. The choice of this strategy was made
\:_:

A
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*:' because numerical models have not yet proven effective for long-range
3 ice forecasting, even when run uncoupled to variable SSTs. The use of
:4:\ numerical models for operational forecasting of ice conditions by the
! ":: United States Navy is presently limited to the 0-6 day range, and this
:_) model (see Preller, 1985) uses prescribed ocean currents and heat
R/ fluxes. étate-of-me-an coupled ice-ocean models of the North Atlantic
%E% are constrained by either the use of prescribed North Atlantic fluxes
Q‘ - into the Arctic (Semtner, 1987) or by a damping of the ocean variables
ﬁ to a prescribed climatology (Hibler and Bryan, 1987). Even when
‘_I these constraints are eventually eliminated, the ice/ocean models will
,, require prognostic forcing fields (at least from the atmosphere) for
5._2 applications to monthly or seasonal ice forecasting. The relatively low
2\4 levels of skill shown by atmospheric forecasts at monthly or seasonal
E » ranges implies that numerical ice model forecasts for these ranges will
;_.:é be sevgr_ely limited by atmospheric input. It is therefore likely that
: the present reliance on statistical techniques in monthly and seasonal
ice forecasting (e.g., Stringer et al., 1984) will continue through the
\ foreseeable future. This was the main consideration in the decision to
: use statistical techniques for this work.
. Chapter II contains a description of the ocean characteristics of
; ::v North Atlantic high latitudes, with an emphasis on the variables rele-
!i vant to seasonal forecasts of the ice cover. A description of the data
F Y. sets used and manipulations applied to them follows in Chapter III.
\ Chapter IV contains an evaluation of a Soviet study of Greenland Sea
v




oo Chapter IV contains an evaluation of a Soviet study of Greenland Sea

ice predictability. The results provide one of the benchmarks for
:-g comparison to the results obtained in the present work. Chapter V
Ef presents the results of this thesis and is followed by a discussion in
g Chapter V1. Finally, the conclusion and recommendations for future

work aré included in Chapter VII.
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-’:‘; Figure 1.1 Compilation of autocorrelations of SST, sea ice, snow and
. 700 mb pressure anomalies from various authors. Auto-
correlations were obtained over large areas of the north
o Pacific (SST and 700 mb) North American continent
oo (snow) and north Atlantic (ice). Data were averaged over
.;:. several months. [from Davis (1976), Lemke et al, (1980).

o Walsh (1982) and Namias and Born (1970)].
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‘ II. ARCTIC OCEAN CHARACTERISTICS

A feature which contributes to the uniqueness of the oceanogra-

phy of the Arctic region is sea ice. Coachman and Aagaard (1974)
) state:

' - h

: The general oceanographic consequences of a perennial or seasonal
ice cover are:

1. The water temperature of the near-surface layer in the presence
of ice is always maintained close to the freezing point for its
salinity by the change of phase process.

2. Salt is excluded from the ice to a varying extent, but the water
under the ice is always enriched in salt by any ice growth. The
dependence of water density on temperature and salinity is such
that close to the freezing point density is almost solely a function
of salinity. Therefore, ice formation can increase the density
locally and some vertical convection may resulit.

By 273 3 B2

3. In the transfer of momentum from the atmosphere to the ocean,
the wind must act on the sea through the intermediary of the ice.

g The focus of this work is on the relationship between SST and ice
concent;aﬁon. Points 1 and 2 listed above indicate two mechanisms
which seive to make the relationship an important one. The third
a point, especially in the resultant form of ocean currents, is also
relevant. -

A closer look at these three factors (ice, water and currents) is
considered useful to put this study in perspective. Much of the infor-
X mation contained in the following sections A through C was extracted
‘ from Coachman and Aagaard (1974); Sater et al. (1971); and CIA
(1978).
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A. ICE

The Arctic Ocean ice pack is confined by a nearly continuous
boundary of land. The associated constraint on equatorward transport
is a major reason why ice which forms here survives longer and devel-
ops into more complex forms than ice found in southern polar regions.
An anm{al net heat loss and stratification of the underlying water also
contribufe to Arctic ice longevity. |

Ice formation in open water starts in the autumn. As days grow
shorter and nights longer, the amount of solar insolation decreases.
Since radiation from the earth remains approximately constant, the
energy budget changes from a net gain in summer through equilibrium
to a net loss in the fall. The relatively warm mixed ocean s1.1rface layer
of summer is cooled until reaching its freezing point and ice crystal
formation commences.

Ice initially forms around the boundaries of the polar ice pack and
over the shallow protected waters of high-latitude coastlines. The
ice-covered areas continue to expand until they merge, forming an
ice-locked Arctic Ocean from October to June. The ice cover starts
from a summer minimum of approximately 5.2 million square km,
then more than doubles in areal extent to a maximum of 11.7 million
square km by the end of the ice season (CIA, 1978, p. 12}.

The ice cover grows continuously until spring. Once the days

start to lengthen, the amount of solar radiation increases until the

surface energy budget is again positive. Snow cover will reflect up to

90 percent of the sun’'s incident radiation, which slows the initial
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, ,_’2‘ heating stages. However, once the air temperature reaches the snow’s
.;.' melting point, the albedo rapidly drops to approximately 40 percent.
” This results in a period of rapid snow melting.
‘.- Continued heating initiates melting of the underlying ice, causing
:::ﬁ cracks and flaws to develop. The surface melt water drains through
; , the cracks, further eroding them until the ice breaks up .into floes.
:-E Eventually, the ocean surface layer heats up, the floes gradually dis-

N solve, and the cycle is complete.
e The extremes of ice cover in the period 1953-1977 are shown in
'.: Figure 2.1. Minima and maxima for both summer and winter are pre-
3 sented. Obviously, sea ice cover has a large degree of variability both
\ inter-seasonally and inter-annually. Ice cover is something of a mis-
:‘_Z- nomer as the sea surface is rarely covered by an unbroken expanse of
?;tﬁ ice. Even in the very thick ice regions of the winter polar pack,
¢ o infrared measurements indicate that up to 10 percent of the area of
:: the ocean is either open water or thin ice from recently refrozen leads
o (Sater et al., 1971, p. 41).
.\ Multi-year ice (ice which has survived a summer’s melting) com-
; prises the majority of the polar pack, which averages 3 m in depth
:2 (Bourke and Garret, 1987). First-year ice rarely grows to a thickness
,' greater than 2 m. However, the depth of the ice in any location is
‘;;E largely dependent on the external forces of wind and currents. These
Zaf cause the ice to converge and diverge. When a region of ice con-
'4'_." verges, it buckles, folds, and overlaps, forming a rugged terrain and
; areas of considerably thick ice. For example, the Beaufort Gyre's
o
d.
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anticyclonic flow causes ice to converge along the north coast of

.
a
L

Ellesmere Island and Creenland. The number of ridges in this region
is well above the average for the Arctic pack (Weeks, 1978). The
mean ice thickness here is of the order of 6 to 8 m (Bourke and
Garrett, 1987). In contrast, the ice pack east of Spitzbergen
(Svalbard) is not confined by land and is free to diverge. Here; the
average ice thickness is significantly less, averaging approximately

2 m.

B. WATER MASSES

The waters of the Arctic Seas are often described on the basis of
temperature and salinity. As such, they are comprised of three main
water masses: Arctic Surface Water, Intermediate or Atlantic Water,
and Deep or Bottom Water (Coachman and Aagaard, 1974). Arctic
surface water is generally limited in depth to 200 m. It has the most
variable characteristics and can be modified by the weather, the sea-
son, and/ or the physical environment. Temperatures in this layer vary
from -1°C to over 2°C. The salinity may be uniform to approximately
50 m, below which a sharp halocline increases the salinity to about
34.5 %o at the bottom of the layer. The variety of conditions in the
surface water is evident in Figure 2.2, where vertical profiles of tem-
perature and salinity from a variety of Arctic basins are plotted.
Coachman and Aagaard (1974, p. 9) state that

The most important processes conditioning and modifying the sur-
face layer are:

» ol
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1. Addition of mass (fresh water) from the land, primarily from the
large Siberian rivers;

2. Additions of fresh water locally through melting of ice;

3. Heat gain through absorption of solar radiation in non-ice-
covered areas during summer;

4. Concentration of salt and hence increase of density of surface
water, through freezing of ice;

5. Heat loss to the atmosphere through any open water surface,
including leads in the central Arctic pack ice; and

6. Inflow and subsequent mixing of Atlantic and Pacific waters.

Processes 1, 2, and 3 occur only from June to September and lead
to a decrease in water density. These buoyant waters form a surface
cap which absorbs radiation and warms. Therefore, in summer, ice-
free regions tend to have warmer and less saline surface layers. In
areas where the ice does not recede, surface temperatures remain
near freezing as incoming energy is used to melt the ice but surface
layer salinities are reduced due to ice melting.

Processes 4 and 5 have the greatest impact in winter. In some
areas, such as the shelf waters, conditions are such that the water
becomes dense enough tc penetrate into the intermediate Atlantic
layer (Aagaard et al., 1985).. However, in general, the strong pycno-
cline at the base of the surface layer prevents mixing due to surface
density changes from penetrating below 200 m (Coachman and

Aagaard, 1974).

As a consequence of the halocline-derived mixing barrier, pro-

cess 6 does not have a great influence on the surface water variability.

However, regions of high surface salinities (33 to 34.5 %o) are found in
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the Greenland and Labrador Seas and East Baffin Bay. These high
salinities are due to the advection of North Atlantic surface water into
the Arctic via warm surface currents from the south. One further con-
sequence of the halocline barrier is that, in winter, when the surface
layer cools below freezing, the relatively warm Atlantic layer is insu-
lated from the ice cover. This severely limits any vertical heat flux.
However, cases have been observed along the continental slopes where
the Atlantic layer is forced to shallower-than-normal depths. Vigor-
ous surface mixing can then break through the halocline, and vertical
heat flux can occur (Coachman and Aagaard. 1974). This results in the
ice melting from the bottom or not forming at all, forming open poly-
nas in the ice cover.

The second water mass is called the Atlantic Layer. It is the
result of the influx of warm and salty (35.0 to 35.1 %o) North Atlantic
water flowing into the Arctic basin through Fram Strait and the
Barents Sea (Weigel, 1987). It extends from 200 m to 900 m with
temperatures above 0° C. A temperature maximum of approximately
0.45° C, observed throughout the Arctic Basin, occurs between 300 m
and 500 m, dependent on location. The salinity gradually decreases to
approximately 34.9 %o in the Arctic Ocean and Greenland Sea and
approximately 34.6 %o in Baffin Bay.

The final water mass, the bottom water, has temperatures below
0° C. The salinity is nearly constant from the bottom of the Atlantic

layer to the ocean floor. The intermediate Atlantic water and deep

water are advected into and out of the Arctic seas from adjacent areas,

|
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principally through Fram Strait in the North Atlantic. The difference
between intermediate and deep water is simply defined as where the
temperature is above 0° C and below 0° C, respectively. Both water
masses are nearly isohaline and therefore of nearly uniform potential
density.

A temperature difference does exist between deep waters of the
Canadian and Eurasian basins. The deep Canadian basin averages
approximately -0.45° C while the Eurasian basin temperature is
approximately -0.79° C (Aagaard et al., 1985). The two temperatures
are kept separate by the Lomonosov Ridge, which acts as a sill
between the two disparate water masses.

Observations of the vertical structure at various stations have been
taken over long time periods and in many different locations. A
remarkable similarity in the profiles has led to the conclusion that the
Arctic basins are in a long-term dynamic steady-state condition
(Coachman and Barnes, 1961). It is further noted that observed dis-
tributions of Arctic water properties are a result of continuing pro-
cesses within the basins. Therefore, surface water T-S profiles
indicate the local modifying processes, while T-S profiles for depths

below 200 m indicate the common origin of the water.

C. CURRENTS

The surface circulation of the Arctic basin has been derived from
satellite observations and the plotting of ice island, buoy and floe sta-
tion movement, as well as ship’s tracks. The circulation of the Arctic

waters is due both to water density differences and wind forcing.
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Although large anomalies in the flow (compared to the long-term
mean currents) are often observed, the long-term mean currents have
been reasonably well documented in the north Atlantic seas (Krauss,
1986). A chart covering the majority of the area of interest in this
study is included in Figure 2.3 which indicates the primary ocean
currents. : -
Circulation and ice movement patterns in the peripheral Atlantic
seas of the Arctic Ocean are dominated by two major currents systems,
one warm, the other cold (Krauss, 1986). The warm North Atlantic
Drift (NAD) Current splits off the Gulf Stream extension south of
Newfoundland and heads northeast. It divides at the Mid-Atlantic
ridge at approximately 51° N. One portion flows north to Iceland,
where it becomes the Irminger Current. The Irminger Current itself
then splits, with one branch taking water eastward around the r.orth
coast of Iceland, where it becomes the North Icelandic Current (NIC)
and then the East Icelandic Current (EIC). The other branch flows
westward, then to the south along the east Greenland slope, eventually

rounding Kap Farvel and heading into the Davis Strait. The main por-

. tion of the NAD passes through the Scotland-Faroes gap and up along

the Norwegian coast, where it is known as the Norwegian Atlantic
Current. At the northern tip of Norway, the current splits again. One
portion continues along the north shore of the USSR to Novaya Zemlya
as the North Cape Current, while the other portion, called the West
Spitsbergen Current (WSC), heads north into the Arctic Ocean just

west of Svalbard.
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The Transpolar Drift Stream is a major cold current originating
under the polar ice cap and exiting the Arctic Ocean through Fram
Strait, between Svalbard and Greenland. It passes down the east coast
of Greenland as the East Greenland Current (EGC) and splits just
north of Iceland (Aagaard and Coachman, 1968). One portion contin-
ues down the Greenland coast, rounds its southern tip, and heads
north up the western coast of Greenland as the West Greenland
Current. This portion merges with water flowing through the various
passages of the Canadian Archipelago to form the cold Labrador
Current. The Labrador Current follows the east coast of Canada from
Baffin Island to Newfoundland. The second of portion of the split
north of Iceland, known as the Jan Mayen Current, flows
southeastward until it merges with the EIC and then finally with the
northeastward-flowing Norwegian Atlantic Current. The southward
EGC, eastward Jan Mayen Current, and north and westward flowing
WSC combine to form a cyclonic gyre in the Greenland Sea. Filaments
of cold water from the Transpolar Drift Stream also flow south from
the Arctic Ocean in a broad, slow pattern from Svalbard to Svernaya
Zemlya. This flow essentially limits the northward warming influences
of the Norwegian Atlantic Current.

Figure 2.1 clearly shows the impact of the major current patterns
on the mean ice coverage. The cold currents support ice growth and
enhance the spatial extent of sea ice, while the warm currents melt
the ice or preclude its formation. The southerly extent of the ice edge

between regions of dissimilar temperatures can vary as much as 30
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degrees of latitude. For example, the cold Labrador Current can often

1 - -
b

support ice cover as far south as Newfoundland. However, the North

Cape of Norway, which is under the influence of the warm Norwegian

i w3

1
l' ]
—

{ .f Atlantic Current, rarely experiences sea ice. An extreme example is a
" region northwest of Svalbard, where open water can normally be found
-. in winter as far north as 80° N. This is over 800 km farther nmorth
: than any other open water in this season (Sater et al., 1971).
W The currents also explain many other features of ice coverage and
{- movement. Sea ice off the east coast of Greenland is found to originate
g_: primarily in the Arctic basin and as a result can be quite thick. The
" East Greenland Current continually carries a wide belt of Arctic pack
ice southward through Fram Strait. As the ice season develops, the ice
4 edge migrates farther and farther south down the east Greenland
coast. Extreme years will have the ice edge as far south as Kap Farvel
; )y or as far north as 70° N. Although sea ice exists north of 70° at all
\f.: times of the year, the belt narrows and has more open water in the
":) late summer (Sater et al., 1971).
;" Strong contrasts in ice coverage are also observed within the
:?. Baffin Bay-Davis Strait region. The warm WGC follows the bathymetric
)' contours of the southern and western Greenland continental shelf,
keeping the southwest coast of Greenland ice free during most win-
ters. However, the cold Labrador Current, as noted before, contributes
', to the large concentrations of ice found along Canada’s east coast well
.,:' south of Baffin Island. This current also carries the majority of
s
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icebergs southward through the Grand Banks fishing zones and the
Hibernia oil fields, and into the north Atlantic sea lanes (CIA, 1978).

D. SEA/ICE FORCING

The primary driving forces for sea ice growth and movement are
the air stress resulting from wind-induced surface drag and the water
stress resulting from ocean currents. Variations in wind forciné are
determined by the passage of synoptic scale weather systems having
spatial scales of 100 to 1000 km and a duration of several days.
Responses of the sea ice to mesoscale features of the atmospheric and
oceanic forcing produce eddies and other fluctuations with length
scales of 10 km and time scales of hours to days. Inertial oscillations
of the drift of sea ice have similar periods. Longer term fluctuations,
with time scales of weeks to seasons, represent responses to atmo-
spheric and ocean forcing integrated over equivalent time scales.

When examining fluctuations varying on time scales of a season to
several decades, the dominant signal in sea ice variability is clearly the
annual cycle (Parkinson et al., 1987). Figure 2.1 contains 25-year
envelopes of the positions of the Arctic ice edge at the end of February
and August, the approximate times of maximum and minimum ice
extent. At most longitudes, the seasonal change from summer to
winter ice edge positions is considerably greater than the 25-year
range of extremes for a particular month. The annual cycle is primar-
ily a response to the seasonally varying insolation and may therefore be

attributed to thermodynamic rather than dynamic forcing.
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Figure 2.2 Vertical profiles of temperature and salinity from various
northern high-latitude basins. [from Coachman and

Aagaard (1974)].
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o m. DATA

'.::E:Z The statistical analysis in this study were based on two data sets.
E-:’ A modified COADS (Comprehensive Ocean-Atmosphere Data Set) data
"I base provided monthly averaged sea surface temperatures, and the
\ SEIC (se‘a ice concentration) data base provided sea ice conéentra;ions
: (in tenths) determined for the end of each month.

. A. COADS

::\: COADS contains approximately 70 million reports from ships of
:E opportunity, ocean weather ships, buoys, and bathythermographs. The
oS data have been assimilated, sorted, edited, and summarized statisti-
f cally for each month during the years 1854 to 1979 in 2° latitude X 2°
ﬁ: longitude boxes over the entire world's oceans (Slutz et al., 1985).
»_ Data sources are noted in Table I.

: COADS is considered to be the most complete data set of envi-
s ronmental parameters now available for the ocean/atmosphere bound-
o ary. However, as described below, Slutz et al. (1985) suggested that
:::: careful attention must be paid to the sometimes serious, and usually
N"-.j'-.' poorly understood, limitations inherent in any data set of this type.

‘L Potential error sources for the COADS data set include:

1. Instruments, observation and coding methods, navigation accu-
DO racy, ship construction, and data density have all undergone his-
= torical changes. Many of these changes were unrecorded in the
r.r data sets from which COADS was derived.

-_’_:', 2. SST measurement. Temperatures measured by engine intake
-'..:’_ have been shown by Ramage (1984) to be approximately 0.5° C
5@
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> warmer than temperatures measured by bucket, but Slutz et al.
'jq (1985) indicate that, in a data set in which both bucket and
‘e intake temperatures are used indiscriminately, there is currently
R no way to effectively differentiate between the two and make
. appropriate corrections. Fortunately, inlkomogeneities
N7 attributable to this problem were not severe during the time

period examined by this study.

o 3. Diurnal effects. The data sets identify how much daylight had
. occurred prior to each observations. However, effects discussed
by Ramage (1984), such as insolation, heating from the ship,-and
cloud cover biases, are not taken into account.

.
a, 4,

NI

=

J: 4. Significant errors can occur at every stage of observation,
vy recording,transmission, and processing. Outlier filters were
‘ applied, but these can only remove the most obvious mistakes.

lr -

o 5. Duplication. Data files often contain numerous duplicate entries
:;Z of one observation. This obviously biases the data. Over 25 per-

; cent of the original data were rejected because of duplication.
However, other duplications undoubtedly still remain.

The region of interest for this thesis was contained in latitudes

28° North to 88° North. Preliminary review indicated that the com-

{ pression of the longitude lines as they converge at the pole reduces
- the area of the 2° X 2° boxes to the point where the number of data
reports per box become too sparse for reasonable analysis. As a result,
j the COADS data were averaged into 4° longitude X 4° latitude boxes.
-’ The average sea surface temperature in each box was then assigned to
i ,. a grid point at the center of the 4° box. This resulted in a monthly
i
grid of 90 x 15 = 1350 points.
¥ B. SEIC
= The SEIC data set containing monthly ice concentration was
:I_ compiled by Walsh and Johnson (1979} from existing sea ice distribu-
jt tion observations. The original data sources are noted in Table II. The
.r_'_.
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data set was recently updated with the digitized ice data for 1972-
1984 from the United States Navy/NOAA Joint Ice Center (Gross,
1986).

These data sets were compiled by applying observations to the

1648 data points contained in a 58 x 80-point grid. The spacing was
1° latitude (approximately 110 km). The grid covered those portions
of the Arctic seas where ice was observed during any month. The 110
km spacing was chosen to permit resolution of year-to-year fluctua-
tion. Grid point values contain the fraction (tenths) of area covered by
ice within each box.
}-.{ The data set contains values for each month from 1953 to 1984.
1953 was chosen as the first year since data records for several
regions of the Arctic seas became essentially continuous from that
period on.

Walsh and Johnson (1979) noted that SEIC, like the COADS, had
limitations. Briefly, these included:

1. The data set covers a time period both before and after satellite
coverage. Different observational methods cause nonuniformity in
the data interpretation.

2. Imprecise concentration classifications. Ice conditions can vary
considerably over relatively small areas. Ice-observing agencies
such as the British Meteorological Office and the United States
Naval Oceanographic Office tend to group the concentrations into
categories such as “very open” (1/10 to 3/10) and “open” (4/10
to 6/10). When the source charts were digitized, the center
value of these classification groups was used.

3. Overlapping data. When more than one source covered the same

area, discrepancies were sometimes observed. In these cases,
the mean was the value digitized and applied to the grid point.
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- 4. Missing data. Some points in the early years had no data, partic-
o ularly the Siberian Sector during the 1950s. In such cases, grid
e values were either linearly interpolated between prior and fol-
Bl lowing months or a 25-year (1953-1977) monthly mean was
’ used. These estimated values were flagged in the digital storage
o mode.
030 C. DATA SET MANIPULATION
\ Correlations between SST and ice concentration required data
I:IE.' covering the same years. The time period of January 1953 to
December 1979, a total of 27 years or 324 months, was selected for
- both variables as each was available over this time frame.
:ii;i The 58 x 80 ice concentration grid was considered the simplest
i 3:1;3 to work with. Because the SST data field was reasonably dense, a sim-
: ple bi-linear objective analysis was used to shift the SST values to the
>
= 58 x 80 grid. The four adjacent SST values were weighted as a linear
- function of distanice. Data points on land were compensated by apply-
(. " ing a zero weighting factor to land values but maintaining the total
: "{: “correct” weightings at 1.0.
Th
" Statistical analysis of every grid point was both impractical and i
_:_ unnecessary. The prime concermn was making predictions in areas of
\x the marginal ice zone (MIZ). Therefore, a procedure was designed to
w.':-.
- select designated points of interest (POI) in that region.
T Correlations of SST with regions of near ice absence (%10 or total
- ice coverage (19100 generally do not produce good results as the ice
i concentration does not vary much at these extreme conditions. The
54 most useful correlations are obtained where large changes in ice con-
centration occur. The entire 324 months of ice concentration values
.-:::‘:
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were averaged in order to form a mean grid for the entire sample
period. Since the annual cycle contained the largest ice concentration
variance, the 5/10 average concentration contour on this mean grid
was considered the most probable location for these large variance
values. A total of 17 well-spaced POlIs were chosen along the 5/10
contour from Hudson's Bay to the northern tip of Norway. The peints
were selected to cover a wide variety of current, latitude, water mass
type. and data density regimes. Subsequent analysis revised these
POlIs to permit better usage of available data and more consistent
spacing north of Norway. The final POIls, plotted on the ice
concentration grid, are shown in Figure 3.1. Ice concentration values
at each POI were then averaged with values from 24 surrounding
points. The 24 points were those which had positions two or less grid
steps in both directions from the POI. This 25-point average provided
some smoothing to the data.

Monthly averages for each POI over the 27 years were calculated
for both ice concentration and SST. These monthly means were then
subtracted from each mean monthly POI value to produce a monthly
anomaly field. This process removed the annual cycle leaving monthly
anomalies of SST (STDMA) and ice concentration (ICDMA). The
removal of the annual cycle severely reduces the ice/SST correlations
which, in “raw” form, are dominated by the annual cycle. The use of
departures from the monthly mean focused concentration on the

interannual fluctuations of the two variables.
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Initial correlation runs were conducted using no time averaging,
three-month centered averaging, and five-month centered averaging.
Increasing the time averaging reduced the noise, allowing better
determination of the correlation signal. Consequently, a five-month
centered averaging was chosen as the final smoothing routine. A
precedent for the use of five-month smoothing was established by
Climate Analysis Center (NOAA/NWS/NMC). Its monthly climate diag-
nostics bulletin (NOAA, 1987) contains a number of products (e.g., the
Southern Oscillation Index) where five-month averaging has been used
to good effect for reducing contamination of signals by short-term
noise. A summary of the data set manipulations is included in Figure
3.2.
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oy TABLE I
e DATA SOURCES FOR COADS
::_5: (Slutz et al., 1985)
» ' Million Reports Source _
E.} (approx.)
= Atlas 38.6 NCDC
Ko s HSST (Historical Sea Surface
iy Temperature Data Project) 25.20 NCDC, Germany
e Old TDF-11 Supplements B and C 7.00 NCDC
= Monterey Telecommunications 4.00 NCDC
*3'.;’- Ocean Station Vessels, and Supplement 0.90 NCDC
} Marsden Square 486 Pre-1940 0.07 NCDC
T Marsden Square 105 Post-1928 0.10 NCDC
National Oceanographic Data Center
(NODC) Surface, and Supplement 2.00 NCDC
b Australian Ship Data (file 1) 0.20 Australia
Japanese Ship Data ~0.13 ' M.LT.
- IMMPC (International Exchange) 3.00 NCDC
- South African Whaling 0.10 NCAR
o Eltanin 0.001 NCDC
D '70s Decade 18.00 NCDC
Ko IMMPC (International Exchange)* 0.90 NCDC
T Ocean Station Vessel Z* 0.004 NCDC
e Australian Ship Data (file 2)* 0.20 Australia
Buoy Data* 0.30 NCDC
#_:: '70s Decade Mislocated Data* 0.003 NCDC
.r{.
. 100.00**
2
w8 * Additions solely to 1970-1979 decade
232 ** The approximate total includes 26.58 million relatively certain
P 2 duplicates, and some seriously defective or mis-sorted reports, which
N were removed by initial processing steps.
%
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TABLE 11

DATA SOURCES FOR SEIC
(Walsh and Johnson, 1979)

U.S. Navy Fleet Weather Facility, 1976-1977: Arctic Sea Ice

Analyses, Eastern and Western (weekly charts), Suitland, MD.
, 1976a: Eastern Arctic Sea Ice Analyses, 1972-75. ADA
033344, Suitland, MD.
, 1976b: Western Arctic Sea Ice Analyses, 1972-75. ADA
033345, Suitland, MD.

British Meteorological Office, 1959-77: Monthly Ice Charts, HMSO.
London (1959 charts in Mariners Weather Log, vols. 3-4).

U.S. Naval Oceanographic Office, 1953-71: Report(s] of the Arctic
Ice Observing and Forecasting Program. Tech. Reps. TR-49
through TR-52, TR-66, TR-69: Spec. Pubs. SP-70 through SP-
81, Washington, DC.

Canadian Meteorological Service, 1966-71: [ce Summary and
Analysis, 1964-69 (Yearbooks), Toronto, Ontario.

Arbok Norsk Polarinstitut, Oslg . 1963-71: Sea ice and drift speed
observations (Annual reports). Also, T. Lunde, 1965: Ice
conditions at Svalbard, 1946-1963. Arbok Norsk Polarinstitut
(1963).

Danish Meteorological Institute, 1957-1968: The Ice Conditions in
the Greenland Waters (Yearbooks), Charlottenlund, Copenhagen.

U.S. Navy Hydrographic Office, 1958: Qceanographic Atlas of the
Polar Seas. Part II. Arctic.H. O. Publ. No. 705, Washington, DC.

Danish Meteorological Institute. 1953-56: The state of the ice in the
Arctic Seas. Appendices to Ngutical-Metorological Annuals
(Yearbooks), Charlottenlund, Copenhagen.

Jokill, 1953-67: Reports of sea ice off the Icelandic coasts (Annual
reports). Icelandic Glaciological Society, Reykjavik.
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17 points of interest (POIs) used in this study are
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Figure 3.1 Chart depicting the 1° latitude spaced Cartesian grid. The
highlighted.

z

-’-,'-h

-
g

"
PR

L N ST Tt
ettt

X
T4

a o
QiLyvyvn



- T T W TW YW

SST
COADS

2 deg. x 2 deg. Global

1854 - 1979
N3

60 nm x 60 nm North. Oceans

average/refine

4 deg. x 4 deg. 28 deg. N-88 Deg. N
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Figure 3.2 Data manipulation flow diagram.
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IV. ASSESSMENT OF SOVIET SKILL

3 Soviet efforts at forecasting North Atlantic sea ice conditions ‘
fal
s appear to have increased substantially during the 1970s. The trans- ‘

lated unclassified literature contains methodologies and results for the
Labradof Sea and the Danish Strait produced from various stI;dies
done at the Murmansk branch of the Arctic and Antarctic Institute
(e.g.. Nikol'skaya et al., 1977; Orlov, 1977). Results for the Danish
Strait and Greenland Sea have been reported by Kirillov and
Khromtsova (1971), Kogan and Orlov (1981) and Lebedev and Uralov
(1982). Although the studies cited above are based exclusivély on
empirical techniques, thermodynamic budget computations have also
been used in other studies (e.g., Moskal’, 1977) as the basis for long-
range predictions of freeze-up dates in the Barents Sea.

\ ‘ With respect to ice forecasting efforts by the Western nations, the
Soviets appear to have explored more thoroughly the use of statistical
techniques for long-range ice forecasting, especially as regards the use
of SST data. Kirillov (1977) states that the empirical procedures used
by the Soviets have been more successful for the Atlantic seas than for
the Pacific seas. The more limited studies of ice forecasting skill by

western scientists (Kelly, 1979; Walsh and Sater, 1981) do not indi-

YV NIORY

cate a similar regional dependence.

=~ Because the Soviets claim considerable skill in seasonal sea ice .
," forecasts that use SST data as a predictor input, it was felt that tests of
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their forecast procedures would provide a useful benchmark for the

results obtained in this analysis. Accordingly, the Greenland Sea ice
forecast procedures of Lebedev and Uralov (1982) were tested using
the data sets described in Chapter III. These procedures permit pre-
dictions of Greenland Sea ice coverage for April, May, ..., August in
terms of land station air temperatures and SST gradients from- the
previous winter (October to February) and the ice cover of the previous
August. Separate equations for seven latitude zones and for each of the
five months were derived by the Soviets using multilinear regression.
The use of 7 x 5 sets of regression parameters increases the likelihood
of sampling error, as the data base used by the Soviets was only 15
years long (1958 to 1972) for two of the regions and 25 years long for
the other regions (years unspecified). The 25-year period used in this
study for testing the results was 1955 to 1979, inclusive. This period
was chosen in order to mesh with the> SST/ice analysis of the present
work.

The air temperatures used by the Soviets were for land surface
stations in the general vicinity of the Greenland Sea: Fjord Radio, Jan
Mayen Island, Cape Tobin, Medvezhii Island, and Reykjavik.
Temperatures averaged over different combinations of these stations
were used for different latitude zones. The SST index, which is simi-
lar to that used in earlier studies of the North Atlantic (e.g., Lebedev
and Uralov, 1976), is the gradient or difference of SST between two
pairs of Ocean Weather Ships. Specifically, the average of the SSTs for
Ships A and C is subtracted from the average for Ships I and J (Figure
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4.1). The physical basis of the index, as presented by Lebedev and
Uralov (1982), is an apparent “indirect association” between SST and
sea ice (see Chapter I). The authors argue that a stronger-than-normal
SST gradient in the region shown in Figure 4.1 favors cyclone trajec-
tories from the Danish Strait northeastward towards Spitsbergen,
favoring. easterly winds and reduced ice cover in the Greenland -Sea.
Weaker-than-normal SST gradients favor more eastward cyclone
trajectories across southern Iceland to northern Norway, favoring
northerly winds and increased ice cover over the Greenland Sea. The
authors further state that, in the latter case, the SSTs close to the MIZ
are likely to be warmer than normal, despite the postulated dynamical
tendency for above-normal ice coverage.

Because the SST and air temperature predictors are averaged over
the October-February period preceding the spring/summer being
forecast, the “lead time” of the forecasts is 2 to 6 months. The pro-
cedure does not require forecasts of atmospheric variables. (Lebedev
and Uralov claim that the SST/cyclone association is largely absent
during the spring/summer months.)

The 35 Soviet regression equations (5 months x 7 latitudinal sec-
tors) were tested in several ways:

1. Forecasts were computed using the r.gression equations exactly
as listed by the Soviets, but using SEIC and COADS data as the
Soviet data was not available;

2. Forecasts were computed using the Soviet predictors but with

the regression constants re-derived from the COADS and SEIC
data; and
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o 3. Forecast skill was evaluated separately for the 1955-79 and 1958-
o 72 periods.

< The results for three of the seven regions are shown in Figures
E:Z;. 4.2 to 4.4 in terms of overall correlation coefficients (predicted vs.
‘.\ observed) for the two periods. The following general conclusions are
1

) apparent from these figures:

:;::::', 1. Considerable skill is present in nearly all cases, both in forecasts
- based on the Soviet regression constants and in forecasts based
o on the re-derived constants;

, 2. In most cases the recomputation of the regression constants
S produced modest enhancements of skill over the values obtained
SN directly from the Soviet equations; and
Lo 3. The skill obtained using SEIC and COADS data and Soviet predic-
Py tors, even with the re-derived constants, is generally five percent

T or more lower for nearly all cases than that listed by the Soviets.
; J‘.‘I
f-‘: The average correlations for all plotted data points in Figure 4.2
e
':' are 0.73 for the published Soviet claims, 0.59 for the forecasts based
on the re-derived regression constants, and 0.43 for the forecasts
7.
SN based on the Soviet regression constants.
';f' The partial correlations between the observed ice coverage and
. ’:'_C- the individual predictors are shown in Figure 4.5. While there is some
II. “
o scatter among the various regions and months, several conclusions can
INJ'_
:f again be drawn:
::_j:j 1. The persistence predictor (ice cover of the previous August) is
e, generally the weakest of the three correlators. In no case does
N the correlation based on this predictor exceed the 95-percent
;:;j significance level;
il 2. The surface air temperature is the highest individual correlator
o in the early portion of the predicted season (April and sometimes
Il Mayj; and
R
P2
o
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3. The SST predictor is generally the highest correlator in the lat-
ter half of the ice season (June-August).

Of the results gleaned from the Soviet skill assessment, the most
pertinent to the present work are that SST input does enhance the
seasonal predictability of the Greenland Sea ice coverage, and that the
correlation between winter SST and summer ice coverage is statisti-
cally significant. Findings such as these have not been reported in the
Western literature. The additional observation that the skill levels
reported by the Soviets are significantly better than those achieved by
other techniques suggests that predictor selection, whether the result
of explicit or implicit screening, has introduced some sampling bias.
This cannot be tested quantitatively without additional information
concerning the data used by the Soviets. especially the source of their
ice data. Differences in the ice data may have contributed to the dis-
crepancies between the two sets of forecast statistics. Nevertheless,
the confirmation of the SST/ice association in the Soviet results pro-
vides perspective for the more general SST/ice analyses described in

the following chapters.
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Figur

e 4.1 Region of study for the Soviet ice cover prediction method.
Ocean stations are labelled by letter. Solid arrows are
average warm currents and dashed arrows are average cold
currents. The numbered positions are meteorological
stations: 1-Cape Tobin; 2-Iceland Sea: 3-Angagssalik: 4-

Reykjavik [from Nikol'skaya et al. (1977)].
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Figure 4.2 Comparison of Soviet correlations (USSR) with correla-
tions calculated using our data and Soviet regression
constants (USSR coef.) and our data with recalculated
regression constants (rev. coef.). The same variables are
used in all three cases. This figure shows values for the
Greenland Sea.
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Figure 4.5 Correlations between ice cover and the three individual
predictors (ice, surface air temperature, and SST) for the
three regions. The 25-year (1955-1979) data set is used.
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V. RESULTS

Statistical analyses of the COADS and SEIC data sets resulted in a
large volume of information. The most effective means of displaying
and presenting this data was in the form of time-longitude contour
plots. The time scale was displayed in the vertical and labeled in
months. The horizontal scale identified the POls. Although the
seventeen selected points were approximately evenly spaced, the bot-
tom scale is not a linear function of longitude. It ranges from

approximately 90° W to 60° E.

A. SST/ICE CONCENTRATION ANOMALIES

The SST and ice concentration anomalies (difference from
monthly means) are shown in Figures 5.1 to 5.6. Both variables have
typical time scales ranging from a season to a year and spatial scales
covering«several POIs. Although five-month time averaging was used to
smooth the time scales, no distance averaging between POIs was con-
ducted. Therefore, distances covered by the anomalies on the contcur
plots are representative of their true extent.

Anomalies lasting over a year and covering the entire POI range
are observed in both fields. Months 82 to 122 for Figures 5.1 and 5.2
and Figures 5.4 and 5.5 show positive SST and negative ice concentra-
tion anomalies, respectively. Figures 5.2 and 5.3 and 5.5 and 5.6

show opposite anomalies for months 200 to 230. These two anomaly
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periods correspond to the relatively ice free years of 1960-1963 and
heavy ice years of 1970-1972.

There does not appear to be any tendency for advection of the
anomalies along the MIZ as evidenced by a lack of anomaly movement

between POIs over time.

B. PERSISTENCE (AUTOCORRELATION) CONTOURS

Persistence (autocorrelation) in this report is similar to, but has
some important differences from, the purely mathematical definition
of autocorrelation. To address whether or not some degree of
“seasonality” existed in the correlations, four base months (January,
April, July, and October) were chosen to represent the four seasons
(Winter, Spring, Summer, and Fall). For each correlation calculation,
the base month remained fixed for each successive year, while the lag
determined the second month of the correlation pair. Since lags were
calculated up to +12 months, the number of correlation pairs was
reducea from 27 to 25. For example, if July were chosen as the base
month and the autocorrelation value were calculated for lag +4, data
from July for the years 1954-1978 would be correlated with data from
the following November for the same 25 years. However, if the auto-
correlation value was calculated for lag -4, data from the Julys would
be correlated with data from the previous Marches. Note that the
correlation pairs at lag +4 are not the same as at lag -4, therefore, the
normal property of an autocorrelation that AC(L) = AC(-L) does not
hold. Similarly, the autocorrelation calculated in this work can not be

transformed to determine spectra.
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The formula used to calculate autocorrelation values was as

follows:
26
Y. Ay(T) Ay(T+L)
AC(L) = y=2
%
Y, Ay(T)2 225 Ay(T+L)2
y=2 y=2 h
where
AC(L) = persistence (autocorrelation) at lag L
Y = the data year (1 to 27 corresponds with 1953 to 1979)
Ay(T) = variable value for designated month T and year Y
Ay(T+L) = variable value at designated month T plus lag L for year Y

The nomenclature has been changed from the normal
representation to emphasize the unique character of the autocorrela-
tion. Assuming a normal distribution, the 95-percent significance
level for a sample size of 25 lies within approximately two standard

deviations of the mean. Therefore:

. 2.00 2 .
95 = J35-1 - vaa_ 04

r

Thus, for a null hypothesis of zero correlation, all correlations

exceeding 0.4 have less than a 5-percent likelihood of having

occurred by chance.
Persistence contours are presented for both ice concentration
and sea surface temperature in Figures 5.7 to 5.14. Since the four

designated base months were three months apart, and lags of +12
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designated base months were three months apart, and lags of £12
months were used for each of them, considerable time overlap exists
between contour plots. This overlap allows cross-checks to be made
to confirm that calculations are consistent.

To demonstrate this cross-check ability, examine Figure 5.7. This
figure shows a negative correlation of -0.1 to -0.3 for position 6 at-lags
of +5 to +9 months. Although not statistically significant, this indi-
cates that January ice concentration is negatively correlated with ice
concentration the following summer and fall. The feature is repeated
in Figure 5.9 at lags of 4 to -7 months. Here, the summer ice con-
centration is negatively correlated with the ice concentration values of
the previous winter and spring. This feature can also be confirmed in
Figure 5.10 at lags of -5 to -9 months where .ice concentration in fall
correlates negatively with ice the previous winter and spring.

For ice persistence, the average 0.7 correlation (50 percent of
variance} contour is at +2 months lag. However, the contours show
marked differences between POIs. For example, Figure 5.10 shows
very low correlation for region 2 even at +2 month lag, yet a 0.7 cor-
relation is observed at a lag greater than +4 months for region 14.
Similarly in Figure 5.8, correlations at region 6 decrease rapidly with
time, especially at positive lags, yet the 0.7 contour extends to lags
longer than -6 months for regions 8 and 14.

Ice persistence is in general at a minimum starting in summer
and at a maximum starting in winter. Averaged over the year, POIs 1,

5-7, 11-13, and 15-17 appear to have the lowest persistence values,
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while 7-10 and 13-15 appear to have the highest values. It should be
noted that, with five-month centered averaging, lags must be greater
than four months in order for the data pairs to be totally independent.
SST persistence is generally stronger than the ice persistence.
The average 0.7 correlation contour for SST extends to almost *3
months. The SST persistence contours also display marked differ-
ences between POls. Strong SST persistence gradients are particu-
larly noticeable at position 1 and so are low persistence lobes at
position 11 and 12. Subsequent analysis indicated that these low
persistence values are due primarily to the lack of data at these points.
The summer season SST values have the highest persistence val-
ues while the spring and winter values have the lowest. Aside from
the low data regions, position 4 has the lowest yearly average SST
persistence. Positions 7-10 and 14-16 indicate the highest average.
Two notable features in Figure 5.14 are the 0.7 contour at -6 months
lag for position 8 and at +8 months lag for position 6. Figure 5.12 also
shows two high persistence features. Position 8 has the 0.7 contour at

a lag of +7 and position 10 has the contour at a lag of -5 months.

C. CROSS-CORRELATION CONTOURS

Cross-correlation coefficients were calculated for each POI in a
similar manner as the persistence plots, with similar differences from
the true mathematical definition of cross—correlation. The cross-cor-

relation formula used was: )
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b 2. Ay(T) By(T+L)

N xcw) = —X=2

SN %

- Y, Ay(T)2 By(T+L)2

,~':-‘. y=2

e

;:;:E where

‘ \ XC(L) . = cross-correlation at lag L -
bt '

?_:::, Ay(T) = first variable value for designated month T and year Y

o

b By(T+L) = second variable value for designated month T plus lag L

for year Y

s

ol Y = data year (1 to 27 corresponds with 1953 to 1979)

:::.;'.: As for the autocorrelations, lags from -12 to +12 months were
o calculated, thereby reducing the number of pairs of correlated values
8

e to 25 for each POI. The same four designated months were chosen as
-:\:

;'_»;';- the basis for the correlation calculations and the large time overlap
¢ ] between seasons again permitted cross-checking of notable correla-
'_-:;ZE tion features.

e -

;E: Negative correlations were expected, especially at short lags
:) because cold temperatures are associated with more ice and warm
:'- temperatures with less ice. Lead and lag relationships were expected
,:, to provide some information regarding cause and effect. That is, does
dape a cold temperature anomaly precede a more concentrated ice field or
':;:jﬁ is the reverse true?

_ The cross-correlation contours are contained in Figures 5.15 to
. 5.22. Cross-correlation values for POIs 1 to 4 and 11 to 12 are positive
o
';'_f; for most seasons. These are not physically meaningful values, but an
o
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artifact resulting from insufficient data density in the applicable
regions as mentioned previously. These regional values should be
ignored.

Regions of high negative cross-correlations were observed. Cross-
correlation coefficient values of 0.4 or greater were statistically
significant and 0.5 or greater were considered noteworthy. The -high
negative correlation regions in general cover two to three POls and
two to eight months in lag. The same correlation features can be
observed on different plots due to the large time overlap. The four
most prominent correlation features are located as follows:

1. Feature A

This feature is observed in Figure 5.18 between points 13 and
16 (E. Norwegian Sea, Bear Island, and N. Barents Seas) from lag -1 to
+10. It shows the largest extent of continuous negative correlation
greater than -0.6. Confirmation is observed in Figure 5.19, where the
same feature appears at lags +1 to -8. This feature also shows strongly
in Figure 5.17 at O to 12 months lag, with additional confirmation in
Figure 5.22 at lags of +3 to -8 months. The cross-correlation suggests
that summer and autumn SSTs might be useful for points 13 to 16 in
predicting ice cover 1 to 10 months later.

2. Feature B

This feature is observed in Figure 5.19 at point 10 (Iceland
Sea) for lags of +2 to +11 months. It is confirmed in Figure 5.17 at

lags of O to -9 months. The spatial extent of this feature is probably

larger than depicted, but the pcor data density at points 11 and 12 has
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reduced its spatial scale. The correlation suggests that winter ice
concentration values at point 10 might be a good predictor for SSTs
up to nearly a year later.
3. Feature C
Figure 5.17 also shows a second high correlation lobe for
region 10 at lags of O to +7 months. It is confirmed in Figure 5.22 at
lags of -2 to -8. This feature suggests that summer SSTs might be
useful predictors for ice cover the following autumn and winter in the
Iceland Sea.
4. Feature D
This feature is observed in Figure 5.18 at point 7 (Kap Farvel)
for lags of -8 to -12 months. The correlation is confirmed in Figure
5.19 for lags of +7 to +10 months. The correlation suggests that, for
point 7, winter ice might be uéed to predict SSTs the following
autumn. Although this feature is notable for its large lag, it is small in

spatial scale and will not be examined in detail.

D. CORRELATION FEATURES

Once it was determined that significant cross-correlation features
existed, they were compared to determine if any similarities or
notable differences could be observed.

Large negative correlations may result from a few extremely
anomalous years (1-2 years with large ice or temperature anomalies of
opposite sign) or from a systematic opposition of the signs of the ice
and temperature anomalies during the 25 years. The following

decomposition is included to address the questions of which and how
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"j many years contributed to the notable ice concentration/temperature
:‘_; correlations of the previous section. Assessment of contributions to
e the correlation may provide information on thresholds of anomaly
{ magnitudes which must be reached in order to use the anomalies in
operational long-range ice forecasting.
’ Table III lists the 25 anomalies of SST and ice concentration used
:: to calculate the cross-correlation value at lag +2 months for Feature A.
:,'- This particular region was chosen from Figure 5.18. Also listed is the
" product of the anomalies and the percentage of the final negative
\, cross-covariance which each year combination provided from 1954 to
: 1978. Positive cross-covariance values were disregarded as they were
C J! generally small. Similar tables were compiled for Feature B at lag -6
-’ months and Feature C at lag -4 months. These are included as Table
;\ IV and Table V and were chosen from Figures 5.17 and 5.22,
\ respectively.
E{Z’: The most noticeable feature indicated in the tables is that the
::E negative correlation coefficients are heavily dominated by anomalies in
_. only 3 or 4 years. Table III indicates 19 of the 25 SST/ice concentra-
'f tion anomaly pairs provide a negative correlation. However, the years
o 1961, 1964, 1968, and 1978 contribute over 69 percent of the total
negative cross-covariance. Table IV indicates that 20 of 25 correla-
tions are negative with 1960, 1961, 1962, and 1968, providing over
44 percent of the total negative cross-covariance value. Similarly,
N Table V shows that 21 of 25 correlations are negative with 1960,
oo
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1961, 1967, and 1968, providing over 55 percent of the total negative

~ox cross-covariance.

_‘_:_ . The signs of the anomalies of SST and ice concentration appear
'E evenly distributed over the 25 year data period. Each variable has
approximately half of its anomaly values positive and half negative.
_1 Neither negative nor positive anomalies for either variable appear to
x dominate for any of the correlation values examined. The absence of
- :-:.'- any trend is also apparent from these tables.

fi_{.f; E. STRONG ANOMALY YEARS

E\ The final analysis step of this project was to examine the SST

anomalies in the four dominant years for each of the three most
notable regions of high negative cross-correlation. The purpose of this

analysis was to determine whether the spatial and temporal charac-

tant?
4 0,
:f.
o .
LA

teristics of the anomalies of the key years were sufficiently similar to

e

permit generalizations about the evolution of the feature producing the

- e s

larger lag-correlations.

‘ Graphs of SST anomalies for the four dominant years were con-
"j structed. The series of graphs for Feature A are contained in Figures
Z\) 5.23 to 5.26. Feature B graphs are included as Figures 5.27 to 5.31,
a: and Feature C graphs as Figures 5.32 to 5.35. The sequence of graphs

7'.'-2*_23 for each feature contains anomaly plots for the months preceding and

:.:4:.: following the highest cross-correlation value month. The intent was to

A determine the degree of consistency in the anomaly development.
‘.J".u

'*i:;l The following general observations were made.
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. The largest SST anomalies, both positive and negative, occurred
at POIs 10, 13, and 14;

. The east-west extent of anomalies was typically two to three
points. However, the consistently low anomaly values at POIs 11
and 12 can probably be attributed to the “data void” noted previ-
ously for these points. If the low values at these points are
ignored. the east-west extent of a very large anomalous region is
observed from POIls 9 to 16 (almost the entire water mass from
Greenland to the USSR);

. The largest anomalies do not occur specifically in the months of
highest negative cross-correlation, but instead are generally
observed in the summer season. The anomalies grow in spring
and decay in the fall and winter. They appear to decay at a slower
rate than they grow;

. The four high correlation years for Features A and C contain two
years of mainly positive and two years of mainly negative SST
anomalies. Feature B contains three years of positive and 1 year
of primarily negative SST anomaly;

. After examining the results from several high correlation regions,
it was noted that the most influential years are not randomly dis-
tributed through the data set. The years which most often pro-
vided high correlations and the signs of their respective SST
anomalies were:

1960  positive

1961 positive

1964  negative/positive
1967  negative

1968 negative

1972  negative/positive
1978  negative/positive

. Consecutive prominent years show similar anomaly profiles for
certain months (for example, the years 1960-1962 in Figure
5.32). However, in general, the anomaly graphs display a wide
variety of profiles with no apparent links. This is further support
for the observation that SST anomalies appear to be regionally
dependent (differ widely between POIs). Additionally, no evi-
dence could be found to indicate that thermal advection was a
factor in SST anomaly persistence. This finding also supported
earlier conclusions about the lack of influence by advection.
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While the results summarized above irdicated that there was
some spatial and temporal coherence in the anomaly fields, the differ-
ences were sufficiently large that generalizations about evolutionary
characteristics of the anomalies could not be made. It is therefore
likely that predictive applications will need to rely more heavily on
threshold values of local or regional anomalies rather than on bread-
scale patterns in space and time. Predictive applications are dis-

cussed further in the following chapter.
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TABLE III

THE 25 ANOMALY PAIRS USED TO CALCULATE
THE HIGH CROSS-CORRELATION VALUE
FOR POI 15 AT LAG +2 FOR OCTOBER

% of
Negative _
SST Ice Conc. Cross-
Year Anomaly Anomaly Product Covariance

1954 0.420 -0.370 -0.155 0.690
1955 0.070 -0.620 -0.043 0.193
1956 -0.260 0.020 -0.005 0.023
1957 -0.030 0.760 -0.023 0.101
1958 -0.120 0.530 -0.064 0.283
1959 C.760 0.480 0.365 0.000
1960 0.860 -1.370 -1.178 5.234
1961 1.850 -3.300 -6.105 27.122
1962 -0.090 -1.330 0.120 0.000
1963 0.410 -1.980 -0.812 3.606
1964 1.570 -2.420 -3.799 16.879
1965 -0.110 0.540 -0.059 0.264
1966 -1.770 0.600 -1.062 4.718
1967 -0.420 1.510 -0.634 2.817
1968 -1.370 2.770 -3.795 16.859
1969 1.060 -0.160 -0.170 0.753
1970 -0.540 0.950 -0.513 2.279
1971 -0.580 1.340 -0.777 3.453
1972 1.600 -0.190 -0.304 1.351
1973 -0.270 -0.370 0.100 0.000
1974 0.560 0.350 0.196 0.000
1975 0.340 0.060 0.020 0.000
ks 1976 0.140 0.810 0.113 0.000
"" f.’_-: 1977 -1.030 1.100 -1.133 5.033

1978 -1.490 1.260 -1.877 8.341




S TABLE IV

o THE 25 ANOMALY PAIRS USED TO CALCULATE
- THE HIGH CROSS-CORRELATION VALUE FOR
- POI 10 AT LAG -6 FOR JULY (SEE FIGURE 5.17)

% of -
" Negative
v SST Ice Conc. Cross-
v Year Anomaly Anomaly Product Covarlance
b 1954 0.780 -0.590 -0.460 3.649
- 1955 0.160 -0.630 -0.101 0.799
bt 1956 0.460 -0.920 -0.423 3.356
- 1957 0.760 -1.160 -0.882 6.991
1958 0.760 -1.000 -0.760 6.027
( 1959 0.720 0.030 0.022 0.000
1960 1.500 -1.010 -1.515 12.014
> 1961 1.140 -1.340 -1.528 12.113
- 1962 0.790 -1.260 -0.995 7.893
' | 1963 -1.300 0.440 -0.572  4.536
- 1964 0.020 0.240 0.005 0.000
- 1965 -0.850 0.450 -0.382 3.033
- 1966 -0.290 0.770 -0.223 1.771
e 1967 -0.950 0.940 -0.893 7.081
- 1968 -1.240 1.310 -1.624 12.881
e 1969 -0.240 1.830 -0.439 3.483
- 1970 -0.800 0.970 -0.776 -  6.153
- 1971 -0.360 0.650 -0.234 1.856
,. 1972 0.220 0.270 0.059 0.000
- 1973 -0.420 -0.210 0.088 0.000
3 1974 0.340 0.080 0.027 0.000
o 1975 -1.060 0.240 -0.254 2.017
1976 -1.040 0.290 -0.302 2.392
1977 -0.870 0.180 -0.157 1.242

% 1978 0.360 -0.250 -0.090 0.714
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TABLE V

THE 25 ANOMALY PAIRS USED TO CALCULATE
THE HIGH CROSS-CORRELATION VALUE
FOR POI 10 AT LAG -4 FOR OCTOBER

% of
Negative _
SST Ice Conc. Cross-
Year Anomaly Anomaly Product Covariance
1954 0.800 0.110 0.088 0.000
1955 0.580 -1.050 -0.609 5.243
1956 0.640 -0.720 -0.461 3.967
1957 0.520 -0.200 -0.104 0.895
1958 0.6CO -0.500 -0.300 2.583
1959 0.700 -0.530 -0.371 3.194
1960 1.510 -1.200 -1.812 15.599
1961 1.190 -1.120 -1.333 11.474
1962 0.370 -0.080 -0.030 0.255
1963 -1.120 0.300 -0.336 2.893
1964 0.230 -0.090 -0.021 0.178
1965 -0.690 0.710 -0.490 4.218
1966 -0.070 0.690 -0.048 0.416
1967 -1.170 1.140 -1.334 11.483
1968 -1.220 1.600 -1.952 16.805
1969 -0.160 1.030 -0.165 1.419
1970 -0.680 0.630 -0.428 3.688
1971 -0.310 0.910 -0.282 2.429
1972 0.200 -0.840 -0.168 1.446
1973 -0.200 0.580 -0.116 0.999
1974 0.180 0.310 0.056 0.000
1975 -1.070 0.500 -0.535 4.606
1976 -0.870 -0.750 0.652 0.000
1977 -0.880 0.820 -0.722 6.212
1978 0.420 0.080 0.034 0.000
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(MONTHS)

TIME

Figure 5.4 Ice anomaly (difference from monthly mean) contours for
POIs 1 through 17 and months 1 through 108. Solid lines
are positive anomalies, dashed lines are negative anoma-
lies. The heavy line is O anomaly. Contour increments are
0.5 tenths of ice concentration.
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Figure 5.5 As for 5.4 except covering months 109 through 216.
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Figure 5.6 As for 5.4 except covering months 217 through 324.
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Figure 5.8 Same as 5.7 except using base month of April.
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Figure 514 Same as 5.11 except using base month of October.
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Figure 518 Same as 5.15 except using base month of October.
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Figure 521 Same as 5.19 except using base month of July.
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VI. DISCUSSION

This discussion is a consolidation (or synthesis) of the results
presented in Chapter V. It addresses the considerations and objec-
tives listed in Chapter 1. Briefly, these include determination of the
anomaly scales, evaluation of the autocorrelations of each variable, and
evaluation of SST and ice concentration cross-correlations. Of partic-
ular interest is how the results of this work can provide an enhanced
framework for sea ice predictability and in some circumstances actu-
ally be used to supplement present ice forecasting capabilities.

Discussion of the correlation features and their utility in forecast-
ing ice cover is more meaningful when applied to identifiable oceanic
regions. ’fherefore, the 17 points of interest used in this work were
related to specific ocean areas (Table VI). Note that the POIs do not
necessarily coincide with the center of each ocean area. The exact

geographic position of each POI is listed in Table VI (see also Figure
3.1).

A. PERSISTENCE

Ice anomaly persistence has long been recognized as a useful ice
forecast tool. However, Figures 5.7 through 5.10 demonstrate that
persistence at lags longer than two months is quite dependent on the
region being examined. Several regions were observed to exhibit
strong persistence values at significant lags while others were notable

for their very low persistence values. Because the data were smoothed
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b3 by a five-month centered mean, persistence of anomalies through one
:3_ season (three months) or less may be a function of data smoothing and
'.sr 0 is therefore of little practical significance. The following list summa-
E.‘ rizes the regions of strong and weak ice persistence, and the number
}: of seasons over which significant (greater than 0.4) persistence exists:
_‘ ! 1. Labrador Sea— good two-season persistence from fall to spring or
:':J winter to summer
Nj 2. South Denmark Strait— good persistence in excess of two seasons
B throughout the year
N 3. Iceland Sea—strong persistence in excess of three seasons
Dy throughout the year
:;E 4. Fram Strait— two-season persistence, however this is a data-poor
e region, therefore suspect
‘ g 5. Bear Island—good two- to three-season persistence throughout
b the year
f f 6. Davis Strait— poor persistence, limited to one season in winter
i?i 7. North Denmark Strait— poor persistence, limited to slightly
s gljegter than one season in winter
”-;‘; 8. Greenland Sea— poor persistence, limited to one season in winter
The seasonal dependencies observed in the above list appear
:" physically plausible. Ice anomaly persistence in the Labrador Sea is
.-:: strongest from the cold months of fall and winter to the warm melting
-_ months of spring and summer. The mechanisms which control
a- anomalies of ice concentration during the freezing periods will con-
\' tinue to do so for two or more seasons. However, the reduced persis-
N tence values from summer to winter indicate that similar long-term
E mechanisms do not operate during this time period. Three factors
=
~,
=
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which may provide an explanation for the reduced summer/fall

persistence values are:

1. During the summer, in the region of the annual average MIZ, the
ice has usually completely melted away. The differences from
monthly means (anomaly values) for grid points here will be near
zero. Essentially, there will be no ice concentration anomalies to
persist and autocorrelation values will be low.

2. In summer, when the ice is breaking up along the MIZ, atmo-
spheric forcing tends to dissipate the ice. The ice margin will
migrate rapidly over long distances. At any given location near
the ice edge, the ice concentration will have a high degree of
variance, thereby reducing ice persistence to low levels.

3. Sea ice in the Arctic exhibits faster seasonal freezing than sea-
sonal melting (Lemke, 1980) particularly in the Labrador Sea.
This type of feature was also noted by Untersteiner, 1983. He
observed that, in general, the ice edge and the average O° C SST
isotherm are nearly coincident during the fall-winter ice
advance, but are often well removed during the spring-summer
melt season. Persistence is enhanced during spring melting
because the ice exhibits considerable “thermal inertia.” In con-
trast, the autumn freeze-up appears to be dominated by the
shorter-term thermodynamic forcing of the atmosphere and, as a
result, the persistence of any ice anomalies is reduced.

Anomalies of autumn ice concentration in the South Denmark
Strait persist well over two seasons. The point chosen to represent
this region is well within the cold East Greenland Drift Stream. Ice

concentration here is influenced by advection of ice from the ice pro-

duction regions farther north in the northwestern Greenland Sea area.
Anomalies originating in the production regions should take a consid-
erable time to dissipate in the relatively cold water of the Denmark
Strait (Vowinckel, 1964). This would explain the extended persis-

tence signal noted here.
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The Iceland Sea shows strong persistence of three or more sea-
‘ sons throughout the entire year. Figure 6.1 indicates that this is an
‘. - area of cold water with influenced flow from the EGC, NIC, and EIC.
j Iceland and the NIC act as barriers preventing any ice dispersion to
the south. The result is that ice concentration anomalies, which were
.:-.. probably advected into the region by the EGC from areas farther nerth,
: are confined and tend to persist for long periods.
L Bear Island and the N. Barents Sea also show strong persistence
e beyond three or more seasons. According to data presented in
:; Parkinson et al. (1987), this region is north of the front which sepa-
’ rates the warm northward-flowing Atlantic water from the cold
:: southward-flowing Arctic water. The front acts as an ice boundary
E preventing ice movement farther to the south, while Svalbard and the
i 3 Arctic ice pack provide a boundary to the north. As such, ice anoma-
:;‘:‘. lies here will not be advected away quickly and the nearly perennial
\ cold water permits the anomalies to persist for long periods.
’ | In summary, there appear to be three common factors which
:‘;: enhance ice concentration persistence. First, the surface waters need
:»':E to be cold enough that an anomaly can exist for long periods of time.
i This condition is usually found in regions directly under the influence

of the southward flowing cold currents exiting the Arctic Basin.

hERTAY

s

AR A

Second, the current, if any, needs to be fairly weak. Third, the area
should be bounded in some manner to limit free advection of sea ice.

However, boundaries need not be limited to coastlines. Current shear
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E’ boundaries, thermal gradient fronts or the pack ice edge may also be
:2 effective boundaries for confining the ice.
’: An explanation for the low persistence values in the Davis Strait,
North Denmark Strait, and Greenland Sea is also suggested by Figure
;;: 2.3. All three regions are located within dynamic current regimes
\ where strong currents (often with varied water properties) converge,
E split, and/or interact. The Davis Strait region is influenced by the
: warm northward-flowing West Greenland Current and the cold
F." southward-flowing Labrador Current. The northern Denmark Strait
area experiences the effects of a branch of the warm Irminger Current
: and the cold East Greenland Current. The ice edge along the east
‘ Greenland continental shelf is strongly influenced by the warm Return
: Atlantic Current and the cold East Greenland Current. Where currents
meet, sharp temperature gradients and velocity shears occur, pro-
_;j ducing instabilities and eddies. These conditions have been observed
_ " to cause large changes in ice concentration. The eddies break down
5 the fronts which hold the ice margin in place. This results in lateral
b, advection of the ice cover and rapid melting of the ice which is drawn
§ into warmer water (Wadhams, 1981). The result is very poor
::: persistence.
3': As noted in Chapter V, the persistence of sea surface temperature
E anomalies also displays notable longitudinal (geographic) dependence.
- The temperature anomalies in general show greater persistence values
than ice concentration values and the high and low persistence
" regions are better defined.
3
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-’\ With the exception of the data-sparse regions, SST persistence is
:_f.:: significant for nearly all regions for periods in excess of one season.
‘ e The Labrador Sea generally has the lowest SST persistence, especially
i in the spring. This is most likely a result of rapid divergence of the
ice cover during spring breakup and the high insolation rates due to
: its more southerly latitude. The water is cleared of ice before the
:'.:v_ months of strongest insolation and can then warm relatively fast.

'; The Denmark Strait, south to the tip of Greenland, is a large area
of strong SST persistence extending to three or more seasons. This is
\ a result of the relatively constant temperatures found in the East
-. Greenland Current.

I ' Bear Island and the N. Barents Sea (POlIs 14-16) show significant
! g SST persistence of three or more seasons. The high persistence is a
,"' result of two factors. First, as noted earlier, these areas are located
'.\- north of the warm Norwegian Atlantic Current water. This region is
'éz_. influenced by the cold, relatively constant temperatures of the Bear
:' Island and East Spitzbergen Currents. Second, temperature anomalies
:. covering such a large region would include a large volume of water,
jj;: especially if the anomaly extended to depths of 50 m or more. Local
'.. weather effects could only erode the temperature anomaly slowly due
T to its large mass and persistence values would remain high.

B. TEMPORAL SCALES OF VARIABILITY

34 The SST and ice concentration anomaly patterns exhibited no
fil apparent long term trend over the 324-month time series. This is in
J’.; contrast to the finding of Lemke et al. (1980), who observed a 10-year
%
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_. trend of decreasing total ice cover in the Arctic for the years 1966 to
' 1976. They also noted that a large coincident negative trend in ice
.' concentration existed in the eastern Atlantic region and a large posi-
.::':: tive trend existed in the Davis Strait sector. These trends can be
'::; detected in Figures 5.2-5.3 during the months 156-276 which corre-
spond ta this 10-year period. However, with respect to the overall 27-
:f,' year data set, these features are not prevalent, do not repeat, and
' therefore should probably be regarded as moderate-term sampling
N fluctuations atypical of the 25-year period as a whole.
| “E\ The anomaly features shown in Figures 5.1-5.6 exhibit a wide
::5»: range of time scales; from little more than a month in some cases to
2 over a year in others. The persistence contours contained in Figures
\’ 5.7-5.14 are an indication of the prevalent anomaly time scales. For
f- example, in this study significant persistence for ice concentration
‘:_J (r= 0.40 for N=25 years) was found at lags of approximately +5 months
\ and for SST at lags of approximately +8 months. In contrast, Lemke et
:;; al. (1980) obtained significant autocorrelation values of empirical
‘ orthogonal functions (EOFs) of Arctic sea ice variability which
; extended only to approximately three mcaths. It should be noted,
0 however, that their values are not longitude-specific because each EOF
._¢ assigns at least some weight to fluctuations at all longitudes. Davis
::j (1976) showed three-month smoothed SST anomalies correlating at
't significant levels extending to lags of + 6 months. Again, in contrast to
_,’ the present study, Davis' use of spatial EOFs did not permit the
:'. determination of persistences for specific points. Persistence values
~
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calculated in this work are generally higher because they were not

subjected to the extensive spatial averaging inherent in the EOF
approach. The longer coherent time scales of this study can also be
attributed to the much longer data record and the significantly greater
data density used to derive the results.

The. difference in time scales between significant persistence
levels in SST and ice correlation suggests that SSTs in general display
considerably more inertia than ice concentration. The primary reason
for this is that sea surface temperature is linked through various mix-
ing processes to a significant amount of water beneath the surface.
Factors which influence SST and ice concentration therefore must
operate on much larger masses and volumes in the case of the water as
compared to ice. Hence, SST anomalies should increase or decrease
more slowly than ice concentration anomalies. For example, a strong
wind can rapidly clear large areas of heavy ice cover yet the SST will
be only minimally affected. Or, in the case of freeze-up, large ocean
areas can quickly develop significant ice concentration levels, espe-
cially when salinities are low, while the adjacent SSTs do not change
dramatically.

Wind, air temperature, and humidity observations display consid-
erably more variance and occur on much shorter time scales than
either SST or ice concentration levels. Time series analyses of these
atmospheric variables have indicated a very noisy signal characterized
by autocorrelations of approximately 0.1 at a one-month lag (Namias

and Born, 1970; Davis, 1976). Nevertheless, the atmosphere
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31:' undoubtedly plays a major role in the evolution of both SST and ice
'3:. concentration anomalies. Ice concentration and SST features respond
to an integration of, or long-term summation of, atmospheric forcing
parameters. Difficulties in formulating the details of this “integral”
: concept have precluded development of an effective real-time model
__ for long-range ice concentration predictions. Therefore, in- the
: absence of a comprehensive and rigorous framework for diagnosing
'. air-sea-ice interactions, a simple autocorrelation of SST and ice con-
. centration remains a practical source of useful forecasting information.
o~ C. CROSS-CORRELATIONS

The features of high SST/ice concentration cross-correlation
1 values (A, B, C, and D as defined in Chapter V) correspond to the
‘.: following geographic areas:
{ . Feature A POI 14— 16 Bear Island and N. Barents Sea
Feature B POI 10 Iceland Sea

% Feature C  POI 10 Iceland Sea

;) Feature D POl 7 Kap Farvel

-{3: Possible explanations for the high cross-correlation values in
:':' these regions are similar to those proposed during the arialysis of the
= persistence values.

:\ The high negative cross-correlation values obtained for the region
T.‘ of feature A suggests that warm (cold) summer and autumn SST
e anomalies will result in reduced (increased) ice concentration
E‘ throughout following ice season (winter and spring). As noted in the
previous section, both SST and ice concentration have high )
5 114
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persistence values here. As a result, summer SST anomalies have a
long period of time in which to influence ice production. A warm SST
anomaly will delay freeze-up and limit ice growth, while a cold SST
anomaly would promote early season freezing and heavier ice produc-
tion. Obviously, the amount of ice eventually produced in winter will
also dictate the ice concentration during the spring breakup. In-this
manner, summer SST anomalies can function as meaningful and reli-
able precursors for ice concentrations up to three seasons later.

The Iceland Sea is also characterized by little influence of warm
water advection. The water remains essentially cold due to cold cur-
rents and low air temperatures. Warming can only take place by
summer heating (short-lived) or by a pulse of warm water from the
westward branch of the Irminger Current. SST and ice concentration
persistence here are also significant to over three seasons. The high
cross-correlation values indicate that the ice has a sufficiently long
time to respond to any SST anomaly that develops. Summer SSTs are
good predictors for ice concentration the following fall and winter. In
addition, once the winter ice has formed, the ice concentration then
becomes a good predictor for SSTs the following autumn, supporting
the notion that a local quasi-equilibrium or feedback mechanism
develops in this region of weak external forcing.

While the cross-correlation at Kap Farvel is not large spatially, it
provides an example of a different type of situation. This region is
imbedded in the strong EGC where the current flows westward as it

rounds the southern tip of Greenland. A strong, well-defined
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?_“ cross-correlation signal is observed for this region which suggests that
: winter ice concentration is a good predictor for SSTs the following
) % autumn. Ice occurs upstream along the east coast of Greenland at all
N :; times of the year and will extend as far south as Kap Farvel in seasons
'a:,_ of extreme icing. However, the relative'y strong current flow and the
.j_ strong seasonal cycle of insolation do not encourage ice persistence.
\ Therefore, the long-term interaction process between SST and ice
3 cannot take place. An alternative hypothesis for the strong cross-
N correlation is that the ice at Kap Farvel is associated with SST
X '}: anomalies which originate upstream probably near the MIZ. In other
E words, ice concentration at the southern tip of Greenland is influ-
. enced by SST anomalies which occur at locations to the north 2-3
,\ seasons worth of travel upstream.
‘-‘:" The importance of the SST influence on sea ice variability to the
y south and east of Greenland as found in this work complements the
f\, findings of Soviet researchers on East Greenland ice predictability
-:;'{ (Lebedev and Uralov, 1982). While the Soviets utilized an indirect
association between SST and sea ice (with the atmosphere presumably
serving as a link between SST and ice concentration), the results
obtained here can be explained in terms of direct associations:
;;:Ej warmer-than-normal surface water is associated with less ice than
:' normal, while colder-than-normal surface water is associated with
-3 more ice than normal. SST data from the MIZ (as in this work), as
'j well as from regions farther south (as in the Soviet work), evidently
R 116
K v
Wl
04
e
"" LA g e NN ) - ] R e .-{




AA AP
s R SLIRFRFAFATIL)

Y W
4

[ AR

5N
N

‘s‘ N

»
o

g R XX
AALANAA

ey
Sy o

1

e

a0y

‘ﬂ.“l‘l""l‘l ’.. “s ",
-,.'.l "l'l’l’l "

e
XS

- -
i ool W of RRRE N

e A
J'

merits consideration in the design of an optimal statistical system for

predicting sea ice coverage south and east of Greenland.

The conclusion that ice concentration may be related to SST
anomalies advected downstream with an ocean current, as proposed
for the Kap Farvel region, is physically plausible. However, as men-
tioned earlier, the anomaly contours (Figures 5.1-5.6) and the demi-
nant year graphs (Figures 5.23-5.35) do not provide any indication
that large-scale anomaly advection takes place.

An alternative possibility is that advection effects might only be
observable in the stronger currents. To examine this, anomalies in the
North Atlantic just south of the Norwegian Sea were considered. The
strong northern extension of the Gulf Stream should advect SST
anomalies into the Norwegian-Barents Sea basin. Anomaly data were
extracted from the COADS data set for all 2° x 2° grid points in the
North Atlantic. The anomalies at each grid point were correlated with
subsequent anomalies at all surrounding grid points in the search for a
preferred directionality of the largest lagged cross-correlations.
Advective control of SST anomalies should produce a spatial asym-
metry in the field of lagged cross-correlations with higher correlation
values in the direction from which advection is occurring.

Analysis of the anomaly fields in the North Atlantic and in the
Norwegian/Barents Seas did not provide evidence of the proposed
link. Anomalies in the two regions appeared to develop quite inde-
pendently. The final conclusion then supports the initial observations,

that is, anomaly features are regionally dependent. Advection may
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explain anomaly development in small areas but it is not the dominant

factor over large areas, i.e., areas encompassing several seas. It should
be noted that the data smoothing may affect the results of the advec-

tive computations, so further work on SST advection statistics is

advisable.
Z D. ICE FORECAST POTENTIAL ‘
{ In the previous section, an analysis of the cross-correlation
between SST and ice concentration was discussed. The regions in
'r which cross-correlation values appear strong enough to provide ice
f forecasting potential have been noted. In order to determine if this
potential is useful, the cross-correlation values for these regions must
'}:_ be compared to our “benchmarks.” Specifically, are the cross-
“'-Z:; correlation values larger, and do they therefore represent a larger ;
{-' | portion of ice concentration variance than persistence or other estab-
E lished procedures for long-range ice forecasting? ]
‘ Comparison between SST/ice concentration cross-correlation and
ice/ice autocorrelation (persistence) is a straightforward task in this
"‘ project as both sets of calculations were conducted using the same
f.\ data base and tﬁe same significance levels. Comparison with the
*‘ Soviet results and previous work by Lemke et al. (1980) is less
straightforward due to the aforementioned differences in time and
spatial scales and data density. The regions for which considerable ice
i forecast potential is indicated are the Iceland Sea, Bear Island. and 1
’27 northern Barents Sea.
: ~
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E.E A review of the Iceland Sea cross-correlation plot (Figure 5.17,
"«- point 10) indicates that significant (0.4) SST/ice concentration cross-
o correlation values exist to a lag of just under nine months. The
‘. significant ice autocorrelation values in Figure 5.9 only extend to seven
::'-; months lag. The autocorrelation values are higher from one to five
, months lag but the cross-correlation values are approximately
: 20 percent larger from five to just under nine months. Therefore,
-' summer SSTs in the Iceland Sea have the potential to be better pre-
-0 dictors of ice concentration in the following mid-winter and spring
-' than ice persistence. However, summer ice persistence is still the
_;; best forecast tool for the fall and early winter.

S Comparison of our results to Lemke et al. (1980) is inappropriate
for the Iceland Sea region due to the large (10° longitudinal arc) areal
'-’.:1- averaging inherent in their approach. The Iceland Sea only fills a
?;: small proportion of the 10° arc. The major proportion of this arc con-
,,E: tains the EGC. The ice, current and atmospheric conditions in the
:' EGC are significantly different from the Iceland Sea. Consequently,
_.“_-_:Z when the EGC areas are averaged with the Iceland Sea, any signal
:: appropriate to the Iceland Sea region alone is masked. It was not
- possible to make comparisons with the Soviet predictions as a discus-
sion of ice prediction in the Iceland Sea could not be found in the
\ Soviet literature.

e Ice persistence and SST/ice concentration cross-correlation
".:.‘_ZE values for Bear Island and the N. Barents Sea (POls 14 to 16) can also
" be compared using Figures 5.9 and 5.17. The ice persistence plot
R
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indicates significant persistence extending to six months lag in the

western part of this region (POI 14) but only to 2-3 months lag else-
where. The SST/ice concentration cross-correlation values, however,
are significant for time periods exceeding a year's lag (for POIs 14 to
16). Ice persistence correlations exceed cross-correlation levels only
at lags less than a month. The increase in persistence towards the
western part of the region is in qualitative agreement with the results
shown by Lemke et al. (1980). POI 14 provides the most direct com-
parison with their first EOF since it is weighted most heavily in their

dominant eigenvectors. Their persistence values, however, are sig-

_ nificantly lower than those determined in this work. Interpolation of

the Lemke et al. results shows that significant persistence of ice
anomalies is limited to approximately five months lag, probably
because of the merging of differcnt regions into each eigenvector.

A competing methodology for forecasting the ice cover of the
Barents Sea has been described by Soviet researchers (Moskal’, 1977).
The Soviet procedure is essentially a one-dimensional thermodynamic
model of a (variable-depth) mixed layer applied at a necwork of points
220 km apart in the Barents Sea. The model is based on the set of
heat and salinity budget equations developed by Doronin in the 1960s
(e.g., Doronin et al., 1970). The treatment of mixing uses constant
diffusivities. The model is initialized with temperature, salinity, and
ice cover data for late August and is forced by climatological radiative
fluxes and station-derived air temperatures, wind speeds, and atmo-

spheric pressures for 10-day periods from late August to late April.
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Moskal’ (1977) claims that the simulated freeze-up (defined to

occur when the mixed-layer temperature drops to the freezing point
of the sea water) produces an ice edge which, in 76 percent of the
cases, coincided with the actual data within the limits of 1/5 of the
amplitude. (The amplitude presumably refers to the envelope con-
taining the interannually variable ice edge at a particular time of year).
Since the forecasts extend to the February-April period, the Soviet
results imply that thermodynamic considerations alone can provide
considerable predictive skill in winter/spring ice coverage in the
Barents Sea. This finding supports the validity of the predictability of
the Barents Sea ice cover obtained in this study. While the Soviet
method of evaluating forecast skill does not permit quantitative com-
parisons with the results in Chapter V, it should be noted that the
Soviet methodology permits only hindcasts (not forecasts) because the
simulations require autumn and winter thermal data from the atmo-
sphere. - This limitation supports the contention made in Chapter I
that long-range forecasting applications of sea ice models will be
severely constrained in the absence of skillful atmospheric forecast
fields for periods more than 5-10 days in advance.

The conclusion for the Bear Island and N. Barents Sea region is
that SST/ice concentration cross-correlations provide significant
improvements over ice/ice autocorrelations for use in ice forecasting.
In particular, for lags from three months to over a year, cross-correla-

tion techniques outperform persistence techniques by up to

30 percent.
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E. THRESHOLD VALUES

The analysis of SST/ice concentration cross-correlation values
indicates that cross-correlation of these two variables can be a more
useful predictor for forecasting future ice concentration than ice con-
centration persistence alone. However, Chapter V showed that strong
cross-correlations are usually a result of strong anomalies which
occurred in 3 or 4 out of a total of 25 sample years. Had these strong
anomaly years not been present, the cross-correlations would probably
not have been significant. Therefore, in order for cross-correlation
values to be used as an effective predictor for a specified time and
location, it would be prudent to determine if the SST anomaly was
large enough to be included in the subset of cases that made major
contributions to the cross-correlations.

The determination of some “threshold” value of an SST anomaly,
above which a corresponding strong ice anomaly could be expected,
would be very useful to a forecaster. Graphs of anomaly values for the
25 years of data for Bear Island/N. Barents Sea (feature A) and Iceland
Sea (features B and C) are included as Figures 6.2, 6.3, and 6.4,
respectively. The plots and the results in Chapter V indicate that a
natural dividing line of approximately 1° C exists between major and
minor anomalies. It thus appears that 1° C would be a useful threshold
number. This means that should the SST near Bear Island or in the N.
Barents Sea differ by more than approximately 1° C from the monthly
mean, the SST information should be weighted heavily in the prepara-

tion of the long range ice forecast. In cases with small (<1° C)
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_*E'_ anomalies of SST, the SST input to the ice forecast should be assigned
":.'; relatively little weight.
":':':}: F. DATA LIMITATIONS
E Analysis of the cross-correlations between SST and ice
: v concentration is inevitably subject to uncertainties in the quantity and
: ‘:"t: quality 6f the data. The impact of the data-sparse regions around ‘POIs
i 1-4 and 11-12 has already been noted in the results obtained here.
: Data limitations in these regions are not surprising since these areas
E?_ are generally inaccessible and surface measurements from these and
:_j other remote locations will probably remain infrequent. The very rea-
: i son data are so limited in these regions (little commercial activity)
\:' reduces the requirement to provide accurate forecasts for commercial
«" interests. However, from a military viewpoint, the strategic value of
\V these regions has increased substantially in recent years for both the
f;:: NATO alliance and the Soviet Union (Conant, 1985; Lindsey, 1977).
'. The future need for additional data and region-specific forecasts may
,- therefore be greater than in the past. The large variability between
'_Ei’ various regions of the North Atlantic, together with the scarcity of

L4

conventional surface observations, implies that remotely sensed data

on SST and sea ice concentration (or ice edge location) may merit
I\-:

El:f; heavier use in research pertaining to North Atlantic sea ice
' forecasting. '

_ The data limitations in the COADS data set were found to be most
) ":-."

o severe during the winter in Hudson Bay, Baffin Bay, and the Svalbard
) -'_'-

A 'i‘.;- region. The utility of the COADS SST observations in regions
% |
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immediately equatorward of the marginal ice zones of the latter region
L was not explored systematically, primarily because the objective selec-
: d tion of the regions/points of interest was a high priority. Future work
may quantify the trade-offs between the gain in observational input and
:. the increase in distance from the MIZ as an SST area is made larger
\ and/or more remote from the climatological ice edge. : -
1 The sea ice data may be regarded as homogeneous since the
advent in the early 1970s of routine satellite coverage and consistently
, formatted hemispheric ice charts (U.S. Navy Fleet Weather Facility,
x 1976). However, prior to the early 1970s, the observational coverage
l' was irregular in space and time. The consolidation of several regional
. data sources for use in this study undoubtedly introduced inhomo-
4 geneities in data quality and quantity. All data identified as
’j? “estimated” or “unreliable” in the gridded SEIC data set was used in
;_ this study, since the advantage of the longer record length was
x thought-to outweigh the disadvantages of the data inhomogeneities.
The correlative results obtained here may thus be regarded as lower
o bounds on the strength of the signals in the data because the data
J inhomogeneities serve as an additional source of “noise.” Statistical
analysis of the later and more data-rich portion of the data sets may
' indicate a stronger SST-ice coupling in some regions than was found
. in this work.
X
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15
16
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Grid Point
. Row-Column

07-48
14-69
15-59
15-64
18-56
21-53
23-64
27-60
31-59
36-57

38-51

39-46

42-49
45-45
48-43
51-43
54-44

TABLE VI

THE POIS, THEIR GRID AND GEOGRAPHIC POSITIONS,
AND THE RESPECTIVE OCEANIC AREAS
WITH WHICH THEY ARE ASSOCIATED

Position

59.16N
50.04N
58.76N
54.77N
62.98N
67.20N
58.62N
63.75N
65.67N
67.98N

73.72N

78.30N

74.35N
75.86N
74.74N
72.11N
68.98N

85.10W
51.70W
59.81W
54.59W
58.99W
57.88W
42.48W
37.74W
29.46W
17.40W

09.38W

00.02W

06.57E
25.00E
38.59E
43.44E
44.65E
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Ocean Area -

HUDSON BAY
LABRADOR SEA
LABRADOR SEA
LABRADOR SEA
DAVIS STRAIT
DAVIS STRAIT

KAP FARVEL

S. DENMARK STRAIT
N. DENMARK STRAIT

ICELAND SEA
(South of Jan Mayen)

GREENLAND SEA
(data poor)

FRAM STRAIT
(data poor)

E. NORWEGIAN SEA
BEAR ISLAND

N. BARENTS SEA
BARENTS SEA
BARENTS SEA
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Vil. CONCLUSIONS AND FUTURE WORK

A. CONCLUSIONS

Previous work by several authors (e.g., Rogers, 1978; Walsh and
Sater, 1981) has attempted to correlate the extent and movement of
the Arcdc ice cover with air pressure fields. While success has Been
achieved in some regions, other regions like the eastern North
Atlantic have not achieved significant correlations.

A statistical analysis of SST and ice concentration anomalies
(deviations from the monthly mean) was conducted, using the recently
compiled COADS and SEIC data sets, in order to determine whether
SST might be an effective and/or useful predictor for the amount of
ice cover. In the course of the analysis, a number of interesting obser-
vations and conclusions were reached. The following is a brief list of

the highlights:

1. SST and ice concentration anomalies occur on spatial scales of
100s and possibly 1000s of kms.

2. SST anomaly time scales are often a year or longer, while ice
concentration anomaly time scales average two to three seasons
(three months/season). These time scales are based on the
periods over which the autocorrelations exceed the 95-percent
significance levels.

3. Both variables exhibit strong regional dependence. Anomaly
evolution is in general a local event and not strongly associated
with anomaly evolution in adjacent or distant regions.

4. Persistence of ice and SST is largest in geographically confined
regions of slow and variable surface currents. Persistence of the
two variables is smallest in regions of strong currents or areas
exhibiting open boundaries.
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oo 5. Cross-correlation of SST and ice concentration is highest in
o regions where the two variables are not subjected to strong
-r:V dynamical influences such as thermal advection. They may
> therefore co-exist in an anomalous state for extended periods.

6. Summer SST anomalies appear to be the precursor to winter ice

o anomalies more frequently than the converse. However, in the

o Iceland Sea region, a feedback mechanism was present whereby

SSTs influenced the winter ice concentration, which in turn
influenced the SST pattern of the following summer.

7. SST was found to be a stronger predictor of ice concentration

e than was ice concentration persistence in the Iceland Sea region

T and around Bear Island and the N. Barents Sea. Specifically, the

SST/ice concentration cross-correlation had higher values in
these regions than the ice/ice autocorrelations.

8. The larger and more comprehensive data sets used for this work

o resulted in larger correlation values than in most previous stud-

ies. A possible exception was the Soviet predictions for the
Greenland Sea. However, when the Soviet statistical models
were tested using COADS and SEIC data, the skill of these mod-
els was less than claimed by the Soviets.

. 9. Current thermodynamic and dynamic models, limited by bound-

s ary conditions and initial fleld inaccuracies, cannot as yet pro-
duce sufficiently accurate ice forecasts beyond several days. In
the absence of major breakthroughs in the long-range prediction
of the major forcing variables, statistical approaches probably
hold the most promise for effective ice concentration forecast-
ing in the near future.

10. The COADS and SEIC data sets, although limited by inhomo-
geneities in the raw data input, can still permit useful statistical

, analyses for some regions of the high-latitude North Atlantic.

B. FUTURE WORK
The SEIC and COADS data sets provide the potential to conduct a
. wide array of statistical analyses on Arctic environmental variables.
: Results from this work indicate that interesting and useful information
can be obtained. More extensive studies incorporating additional
o

.
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- regions and variables would undoubtedly produce further worthwhile
s results. In particular, the following topics merit special attention:

1. The spatial coverage of the data should be increased. The com-
puter programs written for this work can be used to calculate
persistence and cross-correlations for any point on the 58 x 80
grid. This includes regions in the North Pacific, Bering Strait,
Beaufort Sea, etc. The current work demonstrates the regional
dependence or the local nature of ice and SST anomalies.

. Prudent selection and examination of many more POls would

refine the estimates of the anomaly fields. More specifically, the

selection of POIs on the basis of SST and ice data availability
rather than the ice edge climatology might enhance the correla-
tion signal.

ey - .
. PR

ZICAAA A

o 2. A close examination of strong current regions should be con-
A ducted. The present work indicated that advection influenced
the ice conditions at Kap Farvel in the EGC. The possibility exists
- that similar influences occur in other regions dominated by
q strong currents. Some quantitative measure of these influences
would be useful.

3. The current work has indicated that SST and ice concentration
anomalies occur on spatial scales much smaller than those for
'8 which much previous work has been conducted (e.g., Rogers and

van Loon, 1979). Correlation of SST and ice concentration with
other environmental variables such as mean pressure and tem-
perature fields should be re-examined at these smaller scales.
The logical extension to this would be to conduct a multiple
regression analysis of the predictors and develop a high-resolu-
tion statistical ice forecast model for the Arctic Seas. The sensi-
tivity of such models to the scale of the ice predictions should be
systematically explored.

4. The apparent feedback mechanisms found in areas such as the
Iceland Sea should be explored in more detail in order to
unravel the causes and effects, which may well extend to
“external” forcing such as the atmospheric circulation and air
temperature (e.g., Lamb and Morth, 1978).

5. The sensitivity of operational models to initial SST flelds needs to
be examined in order to determine whether ice model forecasts
can achieve skill in the absence of accurate long-range atmo-
spheric forecasts.
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